

ESD-Handbuch für den täglichen Umgang

Herausgeber: AS-Consulting, Der ESD-Coach, Windthorststr. 8a, 82515 Wolfratshausen, Tel.: 08171-344603, http://www.esd-coach.de

Begriffe

EBP Earth Bonding Point	Ein gemeinsamer Anschlusspunkt, an dem ESD-Kontrollelemente
	angeschlossen werden, um diese auf ein gemeinsames Potential zu bringen.
ESD- Kontrollelement	Materialien oder Produkte, die statische Ladungen verhindern bzw. abbauen.
ESD- Koordinator	Benannte Person, mit der Verantwortung die Anforderung der ESD-Norm einzuführen, zu unterhalten und zu verifizieren.

Entstehung

Elektrostatische Ladung entsteht bei Reibung, Zerreißen, Deformieren, Verspritzen, Versprühen, Vermischen, Verdampfen, Influenz oder lediglich bei dem Kontakt zweier zuerst neutraler Körper, die anschließend getrennt werden.

Herausgeber: Der ESD-Coach, www.esd-coach.de, Version 1.0

- DINEN 61340-5-1 Allgemeine Anforderungen
- DINEN 61340-5-1 Benutzerhandbuch

Schutz von elektronischen Bauelementen gegen elektrostatische Phänomene

DIN= Deutsche Institut für Normung e. V.

EN = Europäische Norm

Begriffe

ESD	Elektrostatische Entladung, die
Electrostatic	zur Schädigung eines
Discharge	Bauelements führen kann.
ESDS	Elektronische Bauelemente,
Electrostatic	die durch elektrostatische
Sensitive	Entladungen geschädigt oder
Devices	zerstört werden.
EPA Electrostatic Protected Area	Ein Bereich, in welchem elektrostatische Ladungen mit Spannungen von über 100 Vott, durch ESD- Kontrollelemente verhindert werden.

Herausgeber: Der ESD-Coach, www.esd-coach.de, Version 1.0

Aufladung

Beim Gehen über einen Teppich, beim Aufstehen aus einem Bürostuhl oder beim Anheben einer Kunststofftüte ... können Spannung größer 20.000 Volt entstehen. Dabei ist der Ladungsträger einerseits der Mensch, anderseits der Gegenstand z.B. der Bürostuhl oder auch das Bauelement, welches sich auf einem Fördersystem aufgeladen hat.

Typische Quellen für Aufladungen:

Kleidung und Person	Synthetische Materialien, Vliespullover, Nicht ESD-Mäntel und Schuhe, Haare
Oberflächen	Gewachste, bemalte, lackierte Flächen, Teppich, Vinyl, Kunststoffglas
Stühle	alle Nicht ESD-Stühle
Verpackungen	Kunststofftaschen, -behälter, - hüllen, Schaumstoff, Styropor
Werkzeuge	Drucksprays, komprimierte Luft, Bürsten, Gebläse, Drucker, Monitore

Herausgeber: Der ESD-Coach, www.esd-coach.de, Version 1.0

Typische Aufladungswerte

Herausgeber: Der ESD-Coach, www.esd-coach.de, Version 1.0

- Die Entladung (bzw. Funkenentladung) ist der Ausgleich unterschiedlicher Potentiale und kann vom Menschen oder Gegenstand über das Bauelement zur Erde stattfinden.
- Aufgeladenen Bauteile entladen sich gegenüber der Erde (=Hartentladung).
- Entladungsvorgänge führen zur Vorschädigung bzw. Zerstörung von elektronischen Bauelementen.
- Bauteilzerstörungsgrenzen beginnen bereits bei 10 Volt.
- Die Schwellwerte der gängigsten Bauteile liegen zwischen 100 Volt und 3.000 Volt.

Bauteil Beispiele	Kritische ESD-Spannung
MOSFET	100-200 V
EPROM	100 ∨
OP-AMP	190-2500 V
CMOS	250-3000 V
Schotty-Diode	300-2500 V
Wafer, Hallsensor	4 V
Bipolarer Transistor	300-7000 V

Herausgeber: Der ESD-Coach, www.esd-coach.de, Version 1.0

Grundregeln

- ESD empfindliche Bauelemente dürfen <u>nur</u> in elektrostatisch geschützten Bereichen (=EPA) verarbeitet werden!
- Der Potentialausgleich muss sanft und ständig erfolgen!
- Die wichtigste ESD-Maßnahme ist das Handgelenkerdungsband!
- Auf ableitfähige Kleidung und auf die Schuherdung achten!
- Tägliche die Funktion des Handgelenkerdungssystems und der Person / Schuhwerk Ableitung überprüfen!
- In einer ESD-Schutzzone (=EPA) dürfen keine aufladbaren Materialien verwendet werden, wie Styropor, PE, PVC ...!
- Nur gekennzeichnete und definierte Verpackungsund Transportmaterialien einsetzen!
- Jeder Mitarbeit im Umgang mit ESDS muss auf ESD geschult werden!
- Abweichungen sofort dem ESD-Verantwortlichen melden!

Anforderungen an eine ESD-Schutzzone

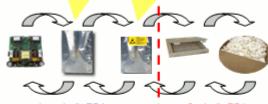
- Warnhinweise müssen auf ein EPA hinweisen
- Relative Luftfeuchte > 20%
- Innerhalb der EPA sind keine elektrostatische Aufladungen erzeugende Materialien erlaubt
- Essen, Trinken, Rauchen oder Wechsel von Kleidungsstücken ist nicht erlaubt
- Arbeitsplatzoberflächen und Fußböden müssen sauber und aufgeräumt sein
- Reinigungsmaterialien dürfen die Eigenschaften der Arbeitsoberflächen und Fußböden nicht beeinträchtigen
- Ungeschulte Einzelpersonen müssen von geschultem Personal begleitet werden

Gefährdete Bereiche

ocidin acte per cione			
Waren-	Lager	Fertigung	Montage
eingang		Produktion	Service
Ver-	Versand	Qualitäts-	Ent-
packen	Transport	kontrolle	wicklung

Herausgeber: Der ESD-Coach, www.esd-coach.de, Version 1.0

Herausgeber: Der ESD-Coach, www.esd-coach.de, Version 1.0


ESD Verpackung

<u>Art</u>	<u>Eiqenschaft</u>	<u>Verwendung</u>
Conductive	Volumenleitfähig 1x10³Ω – 1x10⁵Ω	innerhalb EPA (bedingt außerhalb)
Dissipative	Oberflächen ableitend 1×10⁵Ω – 1×10™Ω	innerhalb EPA
Shielding	Oberflächen ableitend & Abschirmend gegen elektrische Felder 1x10 ⁵ Ω – 1x10 ¹¹ Ω	innerhalb & außerhalb EPA
Low charging	Gering aufladbar, mit der Eigen- schaft, die Ladung zu minimieren	innerhalb EPA

Herausgeber: Der ESD-Coach, www.esd-coach.de, Version 1.0

Verpacken in Shielding Verschließen mit ESD-Hinweis

innerhalb EPA

außerhalb EPA

Die am ESDS anliegende Verpackung muss die ESD gerechte Verpackung (z.B. Shielding) sein!

Shielding Verpackungen können auch zur Lagerung außerhalb vom EPA verwendet werden. Vorsicht, D + L + S Verpackungen haben eine begrenzte Einsetzbarkeit, da sie mit der Zeit an Ableitfähigkeit verlieren!

Herausgeber: Der ESD-Coach, www.esd-coach.de, Version 1.0

Kennzeichnung

Das Symbol wird seit 1984 verwendet und kennzeichnet elektrostatisch gefährdete Bauelemente.

Seit 1993 kennzeichnet diese Symbol ESD schützende Produkte wie Bekleidung, Schutzverpackungen, ESD-Matten ...

Mit Buchstabenzusatz:

C = conductive / D = dissipative

S = shielding / L = low charging

Warnschild für eine ESD-Schutzzone (EPA)

Erdungspunkt am Arbeitsplatz (Earth Bonding Point)

Fremdsymbol für ESDS

Herausgeber: Der ESD-Coach, www.esd-coach.de, Version 1.0